

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	tinyfasta 0.1.0 documentation

Tabel of contents

Content

	TinyFasta
	Features

	Quick Guide

	Installation

	Parsing FASTA files

	Finding FASTA records
	Matching based on the description line

	Matching based on the sequence

	Matching based on the sequence length

	Creating FASTA records
	Using a long sequence string

	Using several sequence strings

	API

 Copyright 2015, Tjelvar Olsson.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	tinyfasta 0.1.0 documentation

TinyFasta

[image: PyPI package]
 [http://badge.fury.io/py/tinyfasta][image: Travis CI build status (Linux)]
 [https://travis-ci.org/tjelvar-olsson/tinyfasta][image: AppVeyor CI build status (Windows)]
 [https://ci.appveyor.com/project/tjelvar-olsson/tinyfasta][image: Code Coverage]
 [https://codecov.io/github/tjelvar-olsson/tinyfasta?branch=master][image: Documentation Status]
 [https://readthedocs.org/projects/tinyfasta/?badge=latest]Python package for working with biological sequences from FASTA files.

	Documentation: http://tinyfasta.readthedocs.org/en/latest/

	GitHub: https://github.com/tjelvar-olsson/tinyfasta

	PyPI: https://pypi.python.org/pypi/tinyfasta

	Free software: MIT License

Features

	Easy to use: intuitive API for parsing, searching and writing FASTA files

	Lightweight: no dependencies outside Python’s standard library

	Cross-platform: Linux, Mac and Windows are all supported

	Works with with Python 2.7, 3.2, 3.3, and 3.4

Quick Guide

To install the TinyFasta package:

sudo pip install tinyfasta

To parse a FASTA file:

>>> from tinyfasta import FastaParser
>>> for fasta_record in FastaParser("tests/data/dummy.fasta"):
... if fasta_record.description.contains('seq1'):
... print(fasta_record)
...
>seq1|contains 2x78 A's
AAA
AAA

To create a FASTA record:

>>> from tinyfasta import FastaRecord
>>> sequence = "C" * 100
>>> fasta_record = FastaRecord.create("My Sequence", sequence)
>>> print(fasta_record)
>My Sequence
CC
CCCCCCCCCCCCCCCCCCCC

 Copyright 2015, Tjelvar Olsson.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	tinyfasta 0.1.0 documentation

Installation

The tinyfasta package can be installed using pip.

sudo pip install tinyfasta

Alternatively, you can clone the package from GitHub and install it.

git clone git@github.com:tjelvar-olsson/tinyfasta.git
cd tinyfasta
sudo python setup.py install

 Copyright 2015, Tjelvar Olsson.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	tinyfasta 0.1.0 documentation

Parsing FASTA files

To parse a FASTA file we make use of the tinyfasta.FastaParser class.

>>> from tinyfasta import FastaParser

To create a tinyfasta.FastaParser instance we simply need the path to
the FASTA file of interest.

>>> fasta_parser = FastaParser('tests/data/dummy.fasta')
>>> fasta_parser.fpath
'tests/data/dummy.fasta'

We can then iterate over all the tinyfasta.FastaRecord instances in
the FASTA file.

>>> for fasta_record in fasta_parser:
... print(fasta_record)
...
>seq1|contains 2x78 A's
AAA
AAA
>seq2|starts with ATTA motif in first line
ATTAA
AAA
...

 Copyright 2015, Tjelvar Olsson.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	tinyfasta 0.1.0 documentation

Finding FASTA records

To find specific FASTA records one can simply iterate over the individual
records in a particular FASTA file and check if the description and/or sequence
contains a particular string or regular expression. Let us therefore start by
creating a tinyfasta.FastaParser instance.

>>> from tinyfasta import FastaParser
>>> fasta_parser = FastaParser('tests/data/dummy.fasta')

Matching based on the description line

Now let us look for a FASTA record where the description contains the string
seq1.

>>> for fasta_record in fasta_parser:
... if fasta_record.description.contains('seq1'):
... print(fasta_record)
...
>seq1|contains 2x78 A's
AAA
AAA

Suppose we wanted to find all the FASTA records where the description line
started with >seq1|, >seq2| or >seq3|. This query can be expressed
using the regular expression below.

>>> import re
>>> search_term = re.compile(r'^>seq[1-3]\|')

We can use compiled regular expression to identify FASTA records of interest.

>>> for fasta_record in fasta_parser:
... if fasta_record.description.contains(search_term):
... print(fasta_record)
...
>seq1|contains 2x78 A's
AAA
AAA
>seq2|starts with ATTA motif in first line
ATTAA
AAA
>seq3|ends with ATTA motif in second line
AAA
AATTA

Matching based on the sequence

We can use a similar approach to check if a tinyfasta.FastaRecord
contains a sequence motif.

Let us first look for records containing a simple ATTA motif.

>>> for fasta_record in fasta_parser:
... if fasta_record.sequence.contains('ATTA'):
... print(fasta_record)
...
>seq2|starts with ATTA motif in first line
ATTAA
AAA
>seq3|ends with ATTA motif in second line
AAA
AATTA
>seq4|contains ATTA motif in middle of first line
AATTAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAA
>seq5|contains ATTA motif split over two lines
AAT
TAA

More complicated sequence motifs can be searched for by compiling regular
expressions. Suppose we wanted to be able to identify any of the sequences
below:

ACCCA
ACCTA
ACTTA
ATTTA
ATTCA
ATCCA

This could be achieved with the regular expression A[C,T]{3}A.

>>> motif = re.compile(r"A[C,T]{3}A")

Now let us find all the FASTA records that contain this motif.

>>> for fasta_record in fasta_parser:
... if fasta_record.sequence.contains(motif):
... print(fasta_record)
...
>seq7|contains ACCCA motif
AAAAAAAAAAAAAAAAAAAAAAAAAAACCCAAA
>seq8|contains ATTTA motif
AAAAAAAAAAAAAAAAAAAAAAAAAAATTTAAA

Matching based on the sequence length

The __len__() magic method of both the tinyfasta.Sequence and
tinyfasta.FastaRecord classes return the length of the biological
sequence. One can therefore use Python’s built-in len() function when
looking for sequences of a particular length.

For example suppose we wanted to find all the sequences with fewer than 80
bases.

>>> for fasta_record in fasta_parser:
... if len(fasta_record) < 80:
... print(fasta_record)
...
>seq7|contains ACCCA motif
AAAAAAAAAAAAAAAAAAAAAAAAAAACCCAAA
>seq8|contains ATTTA motif
AAAAAAAAAAAAAAAAAAAAAAAAAAATTTAAA

 Copyright 2015, Tjelvar Olsson.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	tinyfasta 0.1.0 documentation

Creating FASTA records

There are two ways of creating tinyfasta.FastaRecord instances. We can
create them from a description and a long sequence string or we can build them
up from a description and several sequence strings. The latter approach is used
internally by the tinyfasta.FastaParser.

Using a long sequence string

Let us import the tinyfasta.FastaRecord class and create a
description and sequence strings.

>>> from tinyfasta import FastaRecord
>>> description = 'My Sequence'
>>> sequence = 'C' * 500

We can now create a tinyfasta.FastaRecord from the description and
sequence strings by using the tinyfasta.FastaRecord.create() static
method.

>>> from tinyfasta import FastaRecord
>>> fasta_record = FastaRecord.create(description, sequence)

Let us print out the record to verify what we got.

>>> print(fasta_record)
>My Sequence
CC
CC
CC
CC
CC
CC
CCCCCCCCCCCCCCCCCCCC

Using several sequence strings

However, suppose that we wanted to create a tinyfasta.FastaRecord
from a file containing the input sequence split over several lines. In this
scenario we can simply add the sequence lines one by one.

Let us create a tinyfasta.FastaRecord to add the sequence lines to.

>>> fasta_record = FastaRecord('Yet Another Record')

Now we can start adding sequence lines to it.

>>> fasta_record.add_sequence_line("AAAAAAAA")
>>> fasta_record.add_sequence_line("TTTTTTTTTTTT")
>>> fasta_record.add_sequence_line("CCCCCC")
>>> fasta_record.add_sequence_line("GGGGGGGGGGGGGGG")

Note that by default the string representation of the
tinyfasta.FastaRecord will contain the original sequence line splits.

>>> print(fasta_record)
>Yet Another Record
AAAAAAAA
TTTTTTTTTTTT
CCCCCC
GGGGGGGGGGGGGGG

However, using the tinyfasta.FastaRecord.format_sequence_line_length()
function we can standardised line length.

>>> fasta_record.sequence.format_line_length(30)
>>> print(fasta_record)
>Yet Another Record
AAAAAAAATTTTTTTTTTTTCCCCCCGGGG
GGGGGGGGGGG

 Copyright 2015, Tjelvar Olsson.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	tinyfasta 0.1.0 documentation

API

Package for parsing and generating FASTA files of biological sequences.

Use the tinyfasta.FastaParser class to parse FASTA files.

To generate FASTA files use the tinyfasta.FastaRecord.create() static
method to create tinyfasta.FastaRecord instances, which can be written
to file.

	
class tinyfasta.Sequence

	Class representing a biological sequence.

	
add_sequence_line(sequence_line)

	Add a sequence line to the tinyfasta.Sequence instance.

This function can be called more than once. Each time the function is
called the tinyfasta.Sequence is extended by the sequence line
provided.

	Parameters:	sequence_line – string representing (part of) a sequence

	
format_line_length(line_length=80)

	Format line length used to represent the sequence.

The full sequence is stored as list of shorter sequences. These shorter
sequences are used verbatim when writing out the
tinyfasta.FastaRecord over several lines.

	Parameters:	line_length – length of the sequences used to make up the full
sequence

	
class tinyfasta.FastaRecord(description)

	Class representing a FASTA record.

	
class Description(description)

	Description line in a tinyfasta.FastaRecord.

	
update(description)

	Update the content of the description.

This function can be used to replace the existing description with
a new one.

	Parameters:	description – new description string

	
FastaRecord.add_sequence_line(sequence_line)

	Add a sequence line to the tinyfasta.FastaRecord instance.

This function can be called more than once. Each time the function is
called the tinyfasta.sequence is extended by the sequence line
provided.

	Parameters:	sequence_line – string representing (part of) a sequence

	
static FastaRecord.create(description, sequence)

	Return a FastaRecord.

	Parameters:	
	description – description string

	sequence – full sequence string

	Returns:	tinyfasta.FastaRecord

	
class tinyfasta.FastaParser(fpath)

	Class for parsing FASTA files.

 Copyright 2015, Tjelvar Olsson.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	tinyfasta 0.1.0 documentation

 Python Module Index

 t

 			

 		
 t	

 	
 	
 tinyfasta	

 Copyright 2015, Tjelvar Olsson.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	tinyfasta 0.1.0 documentation

Index

 A
 | C
 | F
 | S
 | T
 | U

A

 	

 	add_sequence_line() (tinyfasta.FastaRecord method)

 	

 	(tinyfasta.Sequence method)

C

 	

 	create() (tinyfasta.FastaRecord static method)

F

 	

 	FastaParser (class in tinyfasta)

 	FastaRecord (class in tinyfasta)

 	

 	FastaRecord.Description (class in tinyfasta)

 	format_line_length() (tinyfasta.Sequence method)

S

 	

 	Sequence (class in tinyfasta)

T

 	

 	tinyfasta (module)

U

 	

 	update() (tinyfasta.FastaRecord.Description method)

 Copyright 2015, Tjelvar Olsson.
 Created using Sphinx 1.3.1.

 _static/minus.png

_static/comment-close.png

_static/down-pressed.png

_static/file.png

_static/comment.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/plus.png

_static/up-pressed.png

search.html

 Navigation

 		
 index

 		
 modules |

 		tinyfasta 0.1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Tjelvar Olsson.
 Created using Sphinx 1.3.1.

_static/up.png

_static/down.png

